Liposomes are microscopic spheres made from the same material as the cell membranes in the human body. They have attracted a lot of attention due to their amazing properties. They can be used to carry drugs, nutrients and other agents to specific destinations in the body. There are various different preparation methods and techniques for liposome manufacturing and those used depend on on various factors.
Phospholipids like lecithin is used as raw material. The phospholipid molecules have heads that love water. They also have two tails that are essential fatty acid chains repelled by water. When the phospholipids are put in a solution that is water-based, the heads end up side by side with the tails trailing behind. The fact that the tails repel water means that another layer lines up with the tails facing the tails of the first layer. This natural alignment results in two rows of tightly fitting molecules. These layers form membranes around and inside all cells.
Liposomes can be used as delivery vehicles for a wide variety of drugs, vaccines, enzymes, genetic material and for some nutritional supplements as well. They not only allow for release of encapsulated materials but are beneficial in themselves for cells. The lipids used to construct the fatty part of the molecule is used by the cell wall for repair and construction of new membranes.
All liposomes consist of a lipid bilayer encapsulating a payload of therapeutic molecules. They bypass the digestive tract, so the payload remains biologically inert until such stage as the cell membrane ruptures. The difference between liposomes comes in the way, how, when and where that occurs.
All the methods for preparation of liposomes have the same basic stages. Lipid vesicles are formed when thin lipid films are hydrated. The liquid bilayers become fluid, detach and self-close to form large vesicles. Once these large particles have formed, their size is reduced by energy input. This may be in the form of sonic energy called sonication or mechanical energy called extrusion.
Different methods are known to have certain weaknesses and strengths. Some allow for high load dosing and others offer much lower dose loading. Some of them offer more consistency and stability. The encapsulated content is affected more by some methods than others.
Some of the problems associated with these processes are inconsistencies in size, structural instability and high costs. These problems are all receiving attention and solutions are being found. Cosmetology, for example, is benefiting from the production of tiny particles called nanosomes which are much, much smaller than normal liposomes and can therefore penetrate the skin more easily.
One of the greatest benefits of liposomes is there flexibility. They can be adapted in many different ways to suit different applications. Size, surface charge and lipid content can all be varied according to the techniques used. Conventional methods are effective but much experimentation is still being done. The future holds many new possibilities with the exciting developments taking place in this field.
Phospholipids like lecithin is used as raw material. The phospholipid molecules have heads that love water. They also have two tails that are essential fatty acid chains repelled by water. When the phospholipids are put in a solution that is water-based, the heads end up side by side with the tails trailing behind. The fact that the tails repel water means that another layer lines up with the tails facing the tails of the first layer. This natural alignment results in two rows of tightly fitting molecules. These layers form membranes around and inside all cells.
Liposomes can be used as delivery vehicles for a wide variety of drugs, vaccines, enzymes, genetic material and for some nutritional supplements as well. They not only allow for release of encapsulated materials but are beneficial in themselves for cells. The lipids used to construct the fatty part of the molecule is used by the cell wall for repair and construction of new membranes.
All liposomes consist of a lipid bilayer encapsulating a payload of therapeutic molecules. They bypass the digestive tract, so the payload remains biologically inert until such stage as the cell membrane ruptures. The difference between liposomes comes in the way, how, when and where that occurs.
All the methods for preparation of liposomes have the same basic stages. Lipid vesicles are formed when thin lipid films are hydrated. The liquid bilayers become fluid, detach and self-close to form large vesicles. Once these large particles have formed, their size is reduced by energy input. This may be in the form of sonic energy called sonication or mechanical energy called extrusion.
Different methods are known to have certain weaknesses and strengths. Some allow for high load dosing and others offer much lower dose loading. Some of them offer more consistency and stability. The encapsulated content is affected more by some methods than others.
Some of the problems associated with these processes are inconsistencies in size, structural instability and high costs. These problems are all receiving attention and solutions are being found. Cosmetology, for example, is benefiting from the production of tiny particles called nanosomes which are much, much smaller than normal liposomes and can therefore penetrate the skin more easily.
One of the greatest benefits of liposomes is there flexibility. They can be adapted in many different ways to suit different applications. Size, surface charge and lipid content can all be varied according to the techniques used. Conventional methods are effective but much experimentation is still being done. The future holds many new possibilities with the exciting developments taking place in this field.
About the Author:
You can visit purensm.com for more helpful information about Methods And Techniques For Liposome Manufacturing.
No comments:
Post a Comment